machinelearning (10)

13707467699?profile=RESIZE_400xThe cybersecurity company ESET has disclosed that it discovered an artificial intelligence (AI)-powered ransomware variant codenamed PromptLock.  Written in Golang, the newly identified strain uses the gpt-oss:20b model from OpenAI locally via the Ollama API to generate malicious Lua scripts in real-time.  The open-weight language model was released by OpenAI earlier this month.  "PromptLock leverages Lua scripts generated from hard-coded prompts to enumerate the local filesystem, inspect target

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in

13644106453?profile=RESIZE_400xA proof-of-concept attack detailed by Neural Trust demonstrates how bad actors can manipulate LLMs into producing prohibited content without issuing an explicitly harmful request.  Named "Echo Chamber," the exploit uses a chain of subtle prompts to bypass existing safety guardrails by manipulating the model's emotional tone and contextual assumptions.  Developed by Neural Trust researcher Ahmad Alobaid, the attack hinges on context poisoning.  Rather than directly asking the model to generate in